4933-4935 SN100e No Clean Solder Wire

MG Chemicals UK Limited

Safety data sheet according to REACH Regulation (EC) No 1907/2006, as amended by UK REACH Regulations SI 2019/758

Issue Date: 28/03/2022 Revision Date: 28/03/2022 L.REACH.GB.EN

SECTION 1 Identification of the substance / mixture and of the company / undertaking
1.1. Product Identifier

Product name	$4933-4935$
Synonyms	SDS Code: 4933-4935; 4933-112G, 4933-454G, 4935-112G, 4935-454G
Other means of identification	SN100e No Clean Solder Wire

1.2. Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses	Lead free solder wire
Uses advised against	Not Applicable

1.3. Details of the supplier of the safety data sheet		
Registered company name	MG Chemicals UK Limited	MG Chemicals (Head office)
Address	Heame House, 23 Bilston Street, Sedgely Dudley DY3 1JA United Kingdom	1210 Corporate Drive Ontario L7L 5R6 Canada
Telephone	$+(44) 1663362888$	$+(1) 800-340-0772$
Fax	Not Available	$+(1) 800-340-0773$
Website	Not Available	www.mgchemicals.com
Email	sales@mgchemicals.com	Info@mgchemicals.com

1.4. Emergency telephone number	
Association / Organisation	Verisk 3E (Access code: 335388)
Emergency telephone	$+(44) 2035147487$
numbers	$+(0) 8006800425$
Other emergency telephone	
numbers	$+(0)$

SECTION 2 Hazards identification

Classified according to GB-CLP Regulation, UK SI 2019/720 and UK SI 2020/1567	Not Applicable
2.2. Label elements	
Hazard pictogram(s)	Not Applicable
Signal word	Not Applicable
Hazard statement(s) Not Applicable	
Supplementary statement(s) Not Applicable	
Precautionary statement(s) P Not Applicable	vention
Precautionary statement(s) Not Applicable	ponse
Precautionary statement(s) St Not Applicable	rage
Precautionary statement(s) Di	posal

Not Applicable

2.3. Other hazards

Inhalation may produce health damage*.
Cumulative effects may result following exposure*.
REACh - Art.57-59: The mixture does not contain Substances of Very High Concern (SVHC) at the SDS print date.

SECTION 3 Composition / information on ingredients

3.1.Substances

See 'Composition on ingredients' in Section 3.2

SECTION 4 First aid measures

4.1. Description of first aid measures

Eye Contact	If this product comes in contact with the eyes: - Wash out immediately with fresh running water. - Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. - Seek medical attention without delay; if pain persists or recurs seek medical attention. - Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. - DO NOT attempt to remove particles attached to or embedded in eye . - Lay victim down, on stretcher if available and pad BOTH eyes, make sure dressing does not press on the injured eye by placing thick pads under dressing, above and below the eye. - Seek urgent medical assistance, or transport to hospital. - Particulate bodies from welding spatter may be removed carefully. - DO NOT attempt to remove particles attached to or embedded in eye. - Lay victim down, on stretcher if available and pad BOTH eyes, make sure dressing does not press on the injured eye by placing thick pads under dressing, above and below the eye. - Seek urgent medical assistance, or transport to hospital.
Skin Contact	If skin or hair contact occurs: - Flush skin and hair with running water (and soap if available). - Seek medical attention in event of irritation. In case of burns: - Immediately apply cold water to burn either by immersion or wrapping with saturated clean cloth. - DO NOT remove or cut away clothing over burnt areas. DO NOT pull away clothing which has adhered to the skin as this can cause further injury. - DO NOT break blister or remove solidified material. * Quickly cover wound with dressing or clean cloth to help prevent infection and to ease pain. - For large burns, sheets, towels or pillow slips are ideal; leave holes for eyes, nose and mouth. - DO NOT apply ointments, oils, butter, etc. to a burn under any circumstances. *Water may be given in small quantities if the person is conscious. - Alcohol is not to be given under any circumstances. - Reassure. - Treat for shock by keeping the person warm and in a lying position. * Seek medical aid and advise medical personnel in advance of the cause and extent of the injury and the estimated time of arrival of the patient. For thermal burns: - Decontaminate area around burn. - Consider the use of cold packs and topical antibiotics. For first-degree burns (affecting top layer of skin) - Hold burned skin under cool (not cold) running water or immerse in cool water until pain subsides. - Use compresses if running water is not available. - Cover with sterile non-adhesive bandage or clean cloth. - Do NOT apply butter or ointments; this may cause infection. - Give over-the counter pain relievers if pain increases or swelling, redness, fever occur. For second-degree burns (affecting top two layers of skin) * Cool the burn by immerse in cold running water for 10-15 minutes. - Use compresses if running water is not available.

- Do NOT apply ice as this may lower body temperature and cause further damage.
- Do NOT break blisters or apply butter or ointments; this may cause infection.
* Protect burn by cover loosely with sterile, nonstick bandage and secure in place with gauze or tape.

To prevent shock: (unless the person has a head, neck, or leg injury, or it would cause discomfort)

- Lay the person flat.
- Elevate feet about 12 inches
* Elevate burn area above heart level, if possible.
- Cover the person with coat or blanket.
- Seek medical assistance.

For third-degree burns
Seek immediate medical or emergency assistance.
In the mean time:

- Protect burn area cover loosely with sterile, nonstick bandage or, for large areas, a sheet or other material that will not leave lint in wound.
- Separate burned toes and fingers with dry, sterile dressings.

Do not soak burn in water or apply ointments or butter; this may cause infection.

- To prevent shock see above.
* For an airway burn, do not place pillow under the person's head when the person is lying down. This can close the airway
- Have a person with a facial burn sit up.
- Check pulse and breathing to monitor for shock until emergency help arrives.

If fumes or combustion products are inhaled remove from contaminated area

- Lay patient down. Keep warm and rested.

Inhalation

Ingestion

* Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary
- Transport to hospital, or doctor, without delay.

Immediately give a glass of water.
First aid is not generally required. If in doubt, contact a Poisons Information Centre or a doctor.
4.2 Most important symptoms and effects, both acute and delayed

See Section 11

4.3. Indication of any immediate medical attention and special treatment needed

Treat symptomatically.
Copper, magnesium, aluminium, antimony, iron, manganese, nickel, zinc (and their compounds) in welding, brazing, galvanising or smelting operations all give rise to thermally produced particulates of smaller dimension than may be produced if the metals are divided mechanically. Where insufficient ventilation or respiratory protection is available these particulates may produce 'metal fume fever' in workers from an acute or long term exposure.

* Onset occurs in 4-6 hours generally on the evening following exposure. Tolerance develops in workers but may be lost over the weekend. (Monday Morning Fever)
* Pulmonary function tests may indicate reduced lung volumes, small airway obstruction and decreased carbon monoxide diffusing capacity but these abnormalities resolve after several months.
- Although mildly elevated urinary levels of heavy metal may occur they do not correlate with clinical effects.
* The general approach to treatment is recognition of the disease, supportive care and prevention of exposure.
* Seriously symptomatic patients should receive chest x-rays, have arterial blood gases determined and be observed for the development of tracheobronchitis and pulmonary edema.
[Ellenhorn and Barceloux: Medical Toxicology]

SECTION 5 Firefighting measures

5.1. Extinguishing media

* DO NOT use halogenated fire extinguishing agents.

Metal dust fires need to be smothered with sand, inert dry powders.
DO NOT USE WATER, CO2 or FOAM.

- Use DRY sand, graphite powder, dry sodium chloride based extinguishers, G-1 or Met L-X to smother fire.
- Confining or smothering material is preferable to applying water as chemical reaction may produce flammable and explosive hydrogen gas.
- Chemical reaction with CO2 may produce flammable and explosive methane.
- If impossible to extinguish, withdraw, protect surroundings and allow fire to burn itself out.

5.2. Special hazards arising from the substrate or mixture

Fire Incompatibility	* Reacts with acids producing flammable / explosive hydrogen (H2) gas

5.3. Advice for firefighters

Fire Fighting	- Alert Fire Brigade and tell them location and nature of hazard. - Wear breathing apparatus plus protective gloves. * Prevent, by any means available, spillage from entering drains or water courses. - Use water delivered as a fine spray to control fire and cool adjacent area. - DO NOT approach containers suspected to be hot. - Cool fire exposed containers with water spray from a protected location. - If safe to do so, remove containers from path of fire. - Equipment should be thoroughly decontaminated after use.
Fire/Explosion Hazard	- DO NOT disturb burning dust. Explosion may result if dust is stirred into a cloud, by providing oxygen to a large surface of hot metal. - DO NOT use water or foam as generation of explosive hydrogen may result. With the exception of the metals that burn in contact with air or water (for example, sodium), masses of combustible metals do not represent unusual fire risks because they have the ability to conduct heat away from hot spots so efficiently that the heat of combustion cannot be maintained - this means that it will require a lot of heat to ignite a mass of combustible metal. Generally, metal fire risks exist when sawdust, machine shavings and other metal 'fines' are present. Metal powders, while generally regarded as non-combustible:

- May burn when metal is finely divided and energy input is high.
- May react explosively with water.

May be ignited by friction, heat, sparks or flame.

* May REIGNITE after fire is extinguished.
- Will burn with intense heat.

Note:

* Metal dust fires are slow moving but intense and difficult to extinguish.
- Containers may explode on heating.

Dusts or fumes may form explosive mixtures with air.

- Gases generated in fire may be poisonous, corrosive or irritating.
- Hot or burning metals may react violently upon contact with other materials, such as oxidising agents and extinguishing agents used on fires involving ordinary combustibles or flammable liquids.
- Temperatures produced by burning metals can be higher than temperatures generated by burning flammable liquids
- Some metals can continue to burn in carbon dioxide, nitrogen, water, or steam atmospheres in which ordinary combustibles or flammable liquids would be incapable of burning.
Combustion products include:
carbon monoxide (CO)
carbon dioxide (CO2)
metal oxides
other pyrolysis products typical of burning organic material.
May emit poisonous fumes.
May emit corrosive fumes.
Explosions can occur with coils of foil that have been submerged or partially submerged in water for an extended period of time. Water can penetrate between the layers of foil, react with the aluminum surface and generate heat and hydrogen gas. When the coils are removed from the cooling effects of the water, rapid temperature increases can occur causing steam explosions which result in the rupture of the coils and discharge of debris.
Coils of foil may be a potential hazard under the following conditions:
Coil has been annealed (annealing removes residual oil that could prevent penetration of water
Foil is very thin gauge ($5-9 \mu \mathrm{~m}$ thickness which increases surface area)
Coil has been immersed for an extended period of time (several hours or more)
Wetted coil has recently been removed from the cooling effects of the water
In such situations, the coils should be isolated (30 meters from any personnel) for at least 72 hours as soon as possible after removal from the water. Coils making crackling sounds or emitting steam should not be approached or transported in commerce. Wetted coils should not be charged into a furnace for remelting until completely dry.

SECTION 6 Accidental release measures

6.1. Personal precautions, protective equipment and emergency procedures
 See section 8

6.2. Environmental precautions

See section 12
6.3. Methods and material for containment and cleaning up

Minor Spills	Environmental hazard - contain spillage. - Clean up all spills immediately. - Avoid breathing dust and contact with skin and eyes. - Wear protective clothing, gloves, safety glasses and dust respirator. - Use dry clean up procedures and avoid generating dust. - Sweep up, shovel up or - Vacuum up (consider explosion-proof machines designed to be grounded during storage and use). - Place spilled material in clean, dry, sealable, labelled container.
Major Spills	Environmental hazard - contain spillage. - Do not use compressed air to remove metal dusts from floors, beams or equipment - Vacuum cleaners, of flame-proof design, should be used to minimise dust accumulation. - Use non-sparking handling equipment, tools and natural bristle brushes. - Provide grounding and bonding where necessary to prevent accumulation of static charges during metal dust handling and transfer operations - Cover and reseal partially empty containers. - Do not allow chips, fines or dusts to contact water, particularly in enclosed areas. If molten: - Contain the flow using dry sand or salt flux as a dam. * All tooling (e.g., shovels or hand tools) and containers which come in contact with molten metal must be preheated or specially coated, rust free and approved for such use. - Allow the spill to cool before remelting scrap. Moderate hazard. - CAUTION: Advise personnel in area. - Alert Emergency Services and tell them location and nature of hazard. - Control personal contact by wearing protective clothing. - Prevent, by any means available, spillage from entering drains or water courses. - Recover product wherever possible. - IF DRY: Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other containers for disposal. IF WET: Vacuum/shovel up and place in labelled containers for disposal. * ALWAYS: Wash area down with large amounts of water and prevent runoff into drains. - If contamination of drains or waterways occurs, advise Emergency Services.

6.4. Reference to other sections

Personal Protective Equipment advice is contained in Section 8 of the SDS.
Pans

Safe handling

Fire and explosion protection

7.2. Conditions for safe storage, including any incompatibilities

Storage incompatibility the worker. smoking. working the surface.

For molten metals: approved for such use. and then hold at that temperature for 6 hours.

- Establish good housekeeping practices.
- Do not use air hoses for cleaning. Vacuums with explosion-proof motors should be used. guidance. an appropriate ignition source.
- Do NOT cut, drill, grind or weld such containers. authorisation or permit.

See section 5

- Store in original containers.
- Keep containers securely sealed.

For major quantities: lakes and streams\}. local authorities.

* Develop work practices and procedures that prevent particulate from coming in contact with worker skin, hair, or personal clothing.
- If work practices and/or procedures are ineffective in controlling airborne exposure or visual particulate from deposition on skin, hair, or clothing, provide appropriate cleaning/washing facilities.
* Procedures should be written that clearly communicate the facility's requirements for protective clothing and personal hygiene. These clothing and personal hygiene requirements help keep particulate from being spread to non-production areas or from being taken home by
* Never use compressed air to clean work clothing or other surfaces.
* Fabrication processes may leave a residue of particulate on the surface of parts, products or equipment that could result in employee exposure during subsequent material handling activities.
- As necessary, clean loose particulate from parts between processing steps. As a standard hygiene practice, wash hands before eating or
* To prevent exposure, remove surface scale or oxidation formed on cast or heat treated products in an adequately ventilated process prior to
- Exposure to elements found in the metal, its alloys or recycled materials, may result as a result of inhalation, ingestion, and skin contact, when melting, casting, dross handling, pickling, chemical cleaning, heat treating, abrasive cutting, welding, grinding, sanding, polishing, milling, crushing, or otherwise heating or abrading the surface of this material in a manner which generates particulates.
- Exposure may also occur during repair or maintenance activities on contaminated equipment such as: furnace rebuilding, maintenance or repair of air cleaning equipment, structural renovation, welding, etc.
* Particulate depositing on hands, gloves, and clothing, can be transferred to the breathing zone and inhaled during normal hand to face motions such as rubbing of the nose or eyes, sneezing, coughing, etc.
- Molten metal and water can be an explosive combination. The risk is greatest when there is sufficient molten metal to entrap or seal off water. Water and other forms of contamination on or contained in scrap or remelt ingot are known to have caused explosions in melting operations. While the products may have minimal surface roughness and internal voids, there remains the possibility of moisture contamination or entrapment. If confined, even a few drops can lead to violent explosions.
- All tooling, containers, molds and ladles, which come in contact with molten metal must be preheated or specially coated, rust free and
- Any surfaces that may contact molten metal (e.g. concrete) should be specially coated
- Drops of molten metal in water (e.g. from plasma arc cutting), while not normally an explosion hazard, can generate enough flammable hydrogen gas to present an explosion hazard. Vigorous circulation of the water and removal of the particles minimise the hazard.
During melting operations, the following minimum guidelines should be observed:
Inspect all materials prior to furnace charging and completely remove surface contamination such as water, ice, snow, deposits of grease and oil or other surface contamination resulting from weather exposure, shipment, or storage
- Store materials in dry, heated areas with any cracks or cavities pointed downwards.
- Preheat and dry large objects adequately before charging in to a furnace containing molten metal. This is typically done by the use of a drying oven or homogenising furnace. The dry cycle should bring the metal temperature of the coldest item of the batch to 200 degree C (400 deg F)
* Organic powders when finely divided over a range of concentrations regardless of particulate size or shape and suspended in air or some other oxidizing medium may form explosive dust-air mixtures and result in a fire or dust explosion (including secondary explosions)
- Minimise airborne dust and eliminate all ignition sources. Keep away from heat, hot surfaces, sparks, and flame.
- Remove dust accumulations on a regular basis by vacuuming or gentle sweeping to avoid creating dust clouds.
- Use continuous suction at points of dust generation to capture and minimise the accumulation of dusts. Particular attention should be given to overhead and hidden horizontal surfaces to minimise the probability of a 'secondary' explosion. According to NFPA Standard 654, dust layers $1 / 32 \mathrm{in} .(0.8 \mathrm{~mm})$ thick can be sufficient to warrant immediate cleaning of the area.
- Minimise dry sweeping to avoid generation of dust clouds. Vacuum dust-accumulating surfaces and remove to a chemical disposal area.
- Control sources of static electricity. Dusts or their packages may accumulate static charges, and static discharge can be a source of ignition.
- Solids handling systems must be designed in accordance with applicable standards (e.g. NFPA including 654 and 77) and other national
* Do not empty directly into flammable solvents or in the presence of flammable vapors.
* The operator, the packaging container and all equipment must be grounded with electrical bonding and grounding systems. Plastic bags and plastics cannot be grounded, and antistatic bags do not completely protect against development of static charges.
Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of
- In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety
- Store in a cool, dry area protected from environmental extremes.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storage and handling recommendations contained within this SDS.
- Consider storage in bunded areas - ensure storage areas are isolated from sources of community water (including stormwater, ground water,
* Ensure that accidental discharge to air or water is the subject of a contingency disaster management plan; this may require consultation with

Suitable container

解
CARE: Packing of high density product in light weight metal or plastic packages may result in container collapse with product release
Heavy gauge metal packages / Heavy gauge metal drums

Chips, fines and dust are considerably more reactive in the presence of:

* Water - slowly generates flammable/explosive hydrogen gas and heat (generation rate is greatly increased with smaller particles (e.g., fines and dusts).
- Heat - oxidise at a rate dependent upon temperature and particle size.
- Strong oxidisers - violent reaction with considerable heat generation; an react explosively with nitrates (e.g., ammonium nitrate and fertilizers
containing nitrate) when heated or molten.
- Acids and alkalis - reacts to generate flammable/explosive hydrogen gas; generation rate is greatly increased with smaller particles (e.g., fines and dusts).
- Halogenated compounds including halogenated fire extinguishing agents, which may react violently with finely divided or molten metals
- Iron oxide (rust) and other metal oxides (e.g., copper and lead oxides) which may produce a violent thermit reaction, initiated by a weak ignition source, generating considerable heat..
* Iron powder and water which may react explosively forming hydrogen gas when heated above 800 degrees C (1470 deg F).

Finely divided metals (e.g., powders or wire) may have enough surface oxide to produce thermit reactions/explosions
The material is described as an electropositive metal.
The activity or electromotive series of metals is a listing of the metals in decreasing order of their reactivity with hydrogen-ion sources such as water and acids. In the reaction with a hydrogen-ion source, the metal is oxidised to a metal ion, and the hydrogen ion is reduced to H 2 . The ordering of the activity series can be related to the standard reduction potential of a metal cation. The more positive the standard reduction potential of the cation, the more difficult it is to oxidise the metal to a hydrated metal cation and the later that metal falls in the series Three notable groups comprise the series

- very electropositive metals
- electropositive metals
- electronegative metals

Electropositive metals.have electronegativities that fall between 1.4 and 1.9 Cations of these metals generally have standard reduction potentials between 0.0 and -1.6 V
They:

- do not react very readily with water to release hydrogen
- react with H_{+}(acids)

Electropositive metals do not burn in air as readily as do very electropositive metals. The surfaces of these metals will tarnish in the presence of oxygen forming a protective oxide coating. This coating protects the bulk of the metal against further oxidation (the metal is passivated).

Reaction is reduced in the massive form (sheet, rod, or drop), compared with finely divided forms. The less active metals will not burn in air but:

- can react exothermically with oxidising acids to form noxious gases.
- catalyse polymerisation and other reactions, particularly when finely divided
- react with halogenated hydrocarbons (for example, copper dissolves when heated in carbon tetrachloride), sometimes forming explosive compounds.
- Elemental metals may react with azo/diazo compounds to form explosive products
- Finely divided metal powders develop pyrophoricity when a critical specific surface area is exceeded; this is ascribed to high heat of oxide formation on exposure to air.
- Safe handling is possible in relatively low concentrations of oxygen in an inert gas
- Several pyrophoric metals, stored in glass bottles have ignited when the container is broken on impact. Storage of these materials moist and in metal containers is recommended.
- The reaction residues from various metal syntheses (involving vacuum evaporation and co-deposition with a ligand) are often pyrophoric

If the surface of the metal is in contact with both oxygen and water, corrosion can occur. In corrosion, the metal acts as an anode and is oxidised.
Many metals may incandesce, react violently, ignite or react explosively upon addition of concentrated nitric acid.
Some electropositive metals do not react with nitric acid because they are passivated.
http://www.wou.edu/las/physci/ch412/activity.htm

- Many metals may incandesce, react violently, ignite or react explosively upon addition of concentrated nitric acid.

7.3. Specific end use(s)

See section 1.2

SECTION 8 Exposure controls / personal protection

8.1. Control parameters

Ingredient	DNELs Exposure Pattern Worker	PNECs Compartment
tin	Dermal $10 \mathrm{mg} / \mathrm{kg}$ bw/day (Systemic, Chronic) Inhalation $71 \mathrm{mg} / \mathrm{m}^{3}$ (Systemic, Chronic) Dermal $80 \mathrm{mg} / \mathrm{kg}$ bw/day (Systemic, Chronic) * Inhalation $17 \mathrm{mg} / \mathrm{m}^{3}$ (Systemic, Chronic) * Oral $5 \mathrm{mg} / \mathrm{kg}$ bw/day (Systemic, Chronic) *	Not Available
rosin, hydrogenated	Dermal $2.131 \mathrm{mg} / \mathrm{kg}$ bw/day (Systemic, Chronic) Inhalation $10 \mathrm{mg} / \mathrm{m}^{3}$ (Local, Chronic) Dermal $1.065 \mathrm{mg} / \mathrm{kg}$ bw/day (Systemic, Chronic) * Oral $1.065 \mathrm{mg} / \mathrm{kg}$ bw/day (Systemic, Chronic) *	$0.002 \mathrm{mg} / \mathrm{L}$ (Water (Fresh)) $0 \mathrm{mg} / \mathrm{L}$ (Water - Intermittent release) $0.016 \mathrm{mg} / \mathrm{L}$ (Water (Marine)) $0.007 \mathrm{mg} / \mathrm{kg}$ sediment dw (Sediment (Fresh Water)) $0.001 \mathrm{mg} / \mathrm{kg}$ sediment dw (Sediment (Marine)) $0 \mathrm{mg} / \mathrm{kg}$ soil dw (Soil) $1000 \mathrm{mg} / \mathrm{L}$ (STP)
copper	Dermal $137 \mathrm{mg} / \mathrm{kg}$ bw/day (Systemic, Chronic) Dermal $273 \mathrm{mg} / \mathrm{kg}$ bw/day (Systemic, Acute) Dermal $137 \mathrm{mg} / \mathrm{kg}$ bw/day (Systemic, Chronic) * Oral $0.041 \mathrm{mg} / \mathrm{kg}$ bw/day (Systemic, Chronic) * Inhalation $1 \mathrm{mg} / \mathrm{m}^{3}$ (Local, Chronic) * Dermal $273 \mathrm{mg} / \mathrm{kg}$ bw/day (Systemic, Acute) * Inhalation $1 \mathrm{mg} / \mathrm{m}^{3}$ (Local, Acute) *	$3.1 \mu \mathrm{~g} / \mathrm{L}$ (Water (Fresh)) $1.2 \mu \mathrm{~g} / \mathrm{L}$ (Water - Intermittent release) $0 \mu \mathrm{~g} / \mathrm{L}$ (Water (Marine)) $87 \mathrm{mg} / \mathrm{kg}$ sediment dw (Sediment (Fresh Water)) $12 \mathrm{mg} / \mathrm{kg}$ sediment dw (Sediment (Marine)) $0.7 \mathrm{mg} / \mathrm{kg}$ soil dw (Soil) $0.33 \mathrm{mg} / \mathrm{L}$ (STP) $0.12 \mathrm{mg} / \mathrm{kg}$ food (Oral)

[^0]
Occupational Exposure Limits (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
EU Consolidated List of	tin	Tin and inorganic tin compounds	$2 \mathrm{mg} / \mathrm{m} 3$	Not Available	Not Available	Not Available

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Indicative Occupational Exposure Limit Values (IOELVs)						
UK Workplace Exposure Limits (WELs)	copper	Copper fume (as Cu)	$0.2 \mathrm{mg} / \mathrm{m} 3$	Not Available	Not Available	Not Available

Emergency Limits

Ingredient	TEEL-1	TEEL-3		
tin	$6 \mathrm{mg} / \mathrm{m} 3$	TEEL-2		
copper	$3 \mathrm{mg} / \mathrm{m} 3$	$67 \mathrm{mg} / \mathrm{m} 3$		
Ingredient	Original IDLH	$30 \mathrm{mg} / \mathrm{m} 3$		
tin	Not Available		Revised IDLH	
rosin, hydrogenated	Not Available	Not Available		
copper	$100 \mathrm{mg} / \mathrm{m} 3$	Not Available		

MATERIAL DATA

A TLV-TWA is recommended so as to minimise the risk of stannosis. The STEL ($4.0 \mathrm{mg} / \mathrm{m} 3$) has been eliminated (since 1986) so that additional toxicological data and industrial hygiene experience may become available to provide a better base for quantifying on a toxicological basis what the STEL should in fact be.

8.2. Exposure controls

8.2.1. Appropriate engineering controls

Metal dusts must be collected at the source of generation as they are potentially explosive.

- Avoid ignition sources.
- Good housekeeping practices must be maintained.
- Dust accumulation on the floor, ledges and beams can present a risk of ignition, flame propagation and secondary explosions.
- Do not use compressed air to remove settled materials from floors, beams or equipment
- Vacuum cleaners, of flame-proof design, should be used to minimise dust accumulation.
* Use non-sparking handling equipment, tools and natural bristle brushes. Cover and reseal partially empty containers. Provide grounding and bonding where necessary to prevent accumulation of static charges during metal dust handling and transfer operations.
- Do not allow chips, fines or dusts to contact water, particularly in enclosed areas.
- Metal spraying and blasting should, where possible, be conducted in separate rooms. This minimises the risk of supplying oxygen, in the form of metal oxides, to potentially reactive finely divided metals such as aluminium, zinc, magnesium or titanium.
* Work-shops designed for metal spraying should possess smooth walls and a minimum of obstructions, such as ledges, on which dust accumulation is possible.
- Wet scrubbers are preferable to dry dust collectors.
- Bag or filter-type collectors should be sited outside the workrooms and be fitted with explosion relief doors.
- Cyclones should be protected against entry of moisture as reactive metal dusts are capable of spontaneous combustion in humid or partially wetted states.
- Local exhaust systems must be designed to provide a minimum capture velocity at the fume source, away from the worker, of 0.5 metre/sec.
- Local ventilation and vacuum systems must be designed to handle explosive dusts. Dry vacuum and electrostatic precipitators must not be used, unless specifically approved for use with flammable/ explosive dusts.

Air contaminants generated in the workplace possess varying 'escape' velocities which, in turn, determine the 'capture velocities' of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant:	Air Speed:
welding, brazing fumes (released at relatively low velocity into moderately still air)	$0.5-1.0 \mathrm{~m} / \mathrm{s}(100-200 \mathrm{f} / \mathrm{min})$.

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of $1-2.5 \mathrm{~m} / \mathrm{s}(200-500 \mathrm{f} / \mathrm{min}$.) for extraction of gases discharged 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

- Safety glasses with side shields.
- Chemical goggles.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation -lens should be removed in

	a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]
Skin protection	See Hand protection below
Hands/feet protection	The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: - frequency and duration of contact, - chemical resistance of glove material, - glove thickness and - dexterity Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent). - When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374 , AS/NZS 2161.10.1 or national equivalent) is recommended. - When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use. - Contaminated gloves should be replaced. As defined in ASTM F-739-96 in any application, gloves are rated as: - Excellent when breakthrough time $>480 \mathrm{~min}$ - Good when breakthrough time $>20 \mathrm{~min}$ - Fair when breakthrough time < 20 min - Poor when glove material degrades For general applications, gloves with a thickness typically greater than 0.35 mm , are recommended. It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times. Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers technical data should always be taken into account to ensure selection of the most appropriate glove for the task. Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example: - Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of. - Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. - Protective gloves eg. Leather gloves or gloves with Leather facing Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present. - polychloroprene. - nitrile rubber. - butyl rubber. - fluorocaoutchouc. - polyvinyl chloride. Gloves should be examined for wear and/ or degradation constantly.
Body protection	See Other protection below
Other protection	- Overalls. - P.V.C apron. - Barrier cream. - Skin cleansing cream. - Eye wash unit.

Respiratory protection

Particulate. (AS/NZS 1716 \& 1715, EN 143:2000 \& 149:001, ANSI Z88 or national equivalent)

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to $10 \times \mathrm{ES}$	P1 Air-line*		PAPR-P1
up to $50 \times$ ES	Air-line**	P2	PAPR-P2
up to $100 \times$ ES	-	P3	-
		Air-line*	-
$100+\mathrm{xES}$	-	Air-line**	PAPR-P3

* - Negative pressure demand ** - Continuous flow
$\mathrm{A}($ All classes $)=$ Organic vapours, B AUS or $\mathrm{B} 1=$ Acid gasses, $\mathrm{B} 2=$ Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), $\mathrm{E}=\mathrm{Sulfur}$ dioxide(SO2), $\mathrm{G}=$ Agricultural chemicals, $\mathrm{K}=$ Ammonia(NH 3), $\mathrm{Hg}=$ Mercury, $\mathrm{NO}=$ Oxides of nitrogen, $\mathrm{MB}=$ Methyl bromide, $\mathrm{AX}=$ Low boiling point organic compounds(below 65 degC)

Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.

- The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure - ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).
Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory protection. These may be government mandated or vendor recommended.
Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program. - Where protection from nuisance levels of dusts are desired, use type N95 (US) or type P1 (EN143) dust masks. Use respirators and components tested and approved under appropriate government standards such as NIOSH (US) or CEN (EU)
- Use approved positive flow mask if significant quantities of dust becomes airborne.

Try to avoid creating dust conditions.
Class P2 particulate filters are used for protection against mechanically and thermally generated particulates or both.
P2 is a respiratory filter rating under various international standards, Filters at least 94% of airborne particles
Suitable for:
Relatively small particles generated by mechanical processes eg. grinding, cutting, sanding, drilling, sawing.
Sub-micron thermally generated particles e.g. welding fumes, fertilizer and bushfire smoke.
Biologically active airborne particles under specified infection control applications e.g. viruses, bacteria, COVID-19, SARS

8.2.3. Environmental exposure controls

See section 12

SECTION 9 Physical and chemical properties

9.1. Information on basic physical and chemical properties

Appearance	Silver Grey		
Physical state	Solid	Relative density (Water $=1$)	6.5
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (${ }^{\circ} \mathrm{C}$)	Not Available
pH (as supplied)	Not Available	Decomposition temperature	Not Available
Melting point / freezing point	227	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (${ }^{\circ} \mathrm{C}$)	1380	Molecular weight ($\mathrm{g} / \mathrm{mol}$)	Not Available
Flash point (${ }^{\circ} \mathrm{C}$)	Not Available	Taste	Not Available
Evaporation rate	Not Available BuAC $=1$	Explosive properties	Not Available
Flammability	Not Available	Oxidising properties	Not Available
Upper Explosive Limit (\%)	Not Available	Surface Tension (dyn/cm or mN / m)	Not Applicable
Lower Explosive Limit (\%)	Not Available	Volatile Component (\%vol)	Not Available
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water	Partly miscible	pH as a solution (Not Available\%)	Not Available
Vapour density ($\mathbf{A i r}=1$)	Not Available	VOC g/L	Not Available
Nanoform Solubility	Not Available	Nanoform Particle Characteristics	Not Available
Particle Size	Not Available		

9.2. Other information

Not Available

SECTION 10 Stability and reactivity

10.1.Reactivity	See section 7.2
10.2. Chemical stability	- Unstable in the presence of incompatible materials. - Product is considered stable. - Hazardous polymerisation will not occur.
10.3. Possibility of hazardous reactions	See section 7.2
10.4. Conditions to avoid	See section 7.2
10.5. Incompatible materials	See section 7.2
10.6. Hazardous decomposition products	See section 5.3

SECTION 11 Toxicological information

11.1. Information on toxicological effects

irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system.
Metals which form part of massive metals and their alloys, are 'locked' into a metal lattice; as a result they are not readily bioavailable following inhalation.
Mechanical processing of massive metals (e.g. cutting, grinding) may cause irritation of the upper respiratory tract. Additional health effects from elevated temperature processing (e.g., welding) can cause metal fume fever (nausea, fever, chills, shortness of breath and malaise), reduced ability of the blood to carry oxygen (methaemoglobin) and the accumulation of fluid in the lungs (pulmonary oedema).
Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.
If prior damage to the circulatory or nervous systems has occurred or if kidney damage has been sustained, proper screenings should be conducted on individuals who may be exposed to further risk if handling and use of the material result in excessive exposures.

Inhalation of freshly formed metal oxide particles sized below 1.5 microns and generally between 0.02 to 0.05 microns may result in 'metal fume fever'. Symptoms may be delayed for up to 12 hours and begin with the sudden onset of thirst, and a sweet, metallic or foul taste in the mouth. Other symptoms include upper respiratory tract irritation accompanied by coughing and a dryness of the mucous membranes, lassitude and a generalised feeling of malaise. Mild to severe headache, nausea, occasional vomiting, fever or chills, exaggerated mental activity, profuse sweating, diarrhoea, excessive urination and prostration may also occur. Tolerance to the fumes develops rapidly, but is quickly lost. All symptoms usually subside within 24-36 hours following removal from exposure.
Inhalation of dusts, generated by the material during the course of normal handling, may be damaging to the health of the individual.
Metals which form part of massive metals and their alloys, are 'locked' into a metal lattice; as a result they are not readily bioavailable following ingestion.
Secondary processes (e.g. change in pH or intervention by gastrointestinal microorganisms) may allow certain substances to be released in low concentrations.
As tin salts (stannous and stannic) are generally poorly absorbed from the gastrointestinal tract. Ingestion of food contaminated with tin may cause transient gastrointestinal disturbances such as nausea, vomiting, diarrhea, fever and headache.
Parenteral administration provides a substantial description of tin toxicology. Systemic tin is highly toxic producing diarrhoea, muscle paralysis, twitching and neurological damage.
By mouth most tin salts are relatively non-toxic. A number of tin 'food' poisonings, producing vomiting, nausea and diarrhoea, have occurred after ingestion of fruit juices etc. with tin levels above 1400 ppm . This appears to be due to gastric irritation resulting from the activity and astringency of tin compounds, rather than systemic toxicity. Severe growth retardation occurs in rats with dietary stannous salts at levels exceeding 0.3%. The material has NOT been classified by EC Directives or other classification systems as 'harmful by ingestion'. This is because of the lack of corroborating animal or human evidence. The material may still be damaging to the health of the individual, following ingestion, especially where pre-existing organ (e.g liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality rather than those producing morbidity (disease, ill-health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, ingestion of insignificant quantities is not thought to be cause for concern.

The material is not thought to produce adverse health effects or skin irritation following contact (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting.
Particles and foreign bodies produced by high speed processes may be penetrate the skin. Even after the wound heals persons with retained foreign bodies may experiencing sharp pain with movement or pressure over the site. Discolouration or a visible mass under the epidermis may be obvious.
Numbness or tingling ('pins and needles'), with decreased sensation, may be the result of a foreign body pressing against nerves.
Persons with diabetes or a history of vascular problems have a higher potential for acquiring an infection
Open cuts, abraded or irritated skin should not be exposed to this material
Evidence exists, or practical experience predicts, that the material may cause eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals.
Repeated or prolonged eye contact may cause inflammation characterised by temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur.
Contact with the eye, by metal dusts, may produce mechanical abrasion or scratches on the cornea - these injuries usually are minor. However foreign body penetration of the eyeball may produce infection or result in permanent visual damage.
High-speed machines (such as drills and saws) can produce white-hot particles of metal that resemble sparks. Any of these white-hot particles can enter the unprotected eye and become embedded deep within it. Foreign bodies that penetrate the inside of the eye can cause infection (endophthalmitis).
During the first hours after injury, symptoms of intraocular foreign bodies may be similar to those of corneal abrasions and foreign bodies.
However, people with intraocular foreign bodies may also have a noticeable loss of vision. Fluid may leak from the eye, but if the foreign body is small, the leak may be so small that the person is not aware of it. Also, pain may increase after the first several hours
Corneal abrasions caused by particles and foreign bodies usually cause pain, tearing, and a feeling that there is something in the eye. They may also cause redness (due to inflamed blood vessels on the surface of the eye) or, occasionally, swelling of the eye and eyelid. Vision may become blurred. Light may be a source of irritation or may cause the muscle that constricts the pupil to undergo a painful spasm.
Injuries that penetrate the eye may cause similar symptoms. If a foreign object penetrates the inside of the eye, fluid may leak out.
Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems.
There is sufficient evidence to provide a strong presumption that human exposure to the material may produce heritable genetic damage. There is sufficient evidence to provide a strong presumption that human exposure to the material may result in the development of heritable genetic damage, generally on the basis of

- appropriate animal studies,
- other relevant information

Toxic: danger of serious damage to health by prolonged exposure through inhalation, in contact with skin and if swallowed.
Serious damage (clear functional disturbance or morphological change which may have toxicological significance) is likely to be caused by repeated or prolonged exposure. As a rule the material produces, or contains a substance which produces severe lesions. Such damage may become apparent following direct application in subchronic (90 day) toxicity studies or following sub-acute (28 day) or chronic (two-year) toxicity tests.
Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.
Metallic dusts generated by the industrial process give rise to a number of potential health problems. The larger particles, above 5 micron, are nose and throat irritants. Smaller particles however, may cause lung deterioration. Particles of less than 1.5 micron can be trapped in the lungs and, dependent on the nature of the particle, may give rise to further serious health consequences.
Metals are widely distributed in the environment and are not biodegradable. Biologically, many metals are essential to living systems and are involved in a variety of cellular, physiological, and structural functions. They often are cofactors of enzymes, and play a role in transcriptional control, muscle contraction, nerve transmission, blood clotting, and oxygen transport and delivery. Although all metals are potentially toxic at some level, some are highly toxic at relatively low levels. Moreover, in some cases the same metal can be essential at low levels and toxic at higher levels, or it may be toxic via one route of entry but not another. Toxic effects of some metals are associated with disruption of functions of
essential metals. Metals may have a range of effects, including cancer, neurotoxicity, immunotoxicity, cardiotoxicity, reproductive toxicity, teratogenicity, and genotoxicity. Biological half lives of metals vary greatly, from hours to years. Furthermore, the half life of a given metal varies in different tissues. Lead has a half life of 14 days in soft tissues and 20 years in bone.
In considering how to evaluate the toxicity of metals of potential concern, a number of aspects of metal toxicity should be kept in mind: Different species vary in their responses to different metals; in some cases, humans are more sensitive than rodents. Thus, there is a need for broad-based testing of metals;

* The route of exposure may affect the dose and site where the metal concentrates, and thus the observed toxic effects;
- Metal-metal interactions can reduce or enhance toxicity; biotransformation can reduce or enhance toxicity;
- It is difficult to predict the toxicity of one metal based on the adverse effects of another; in trying to evaluate the toxicity of one particular metal compound, predictions based on similar compounds of the same metal may be valid.

Chronic exposure to tin dusts and fume results in 'stannosis' a mild form of pneumoconiosis. Chest symptoms develop several years after breathing difficulties (dyspnae) occur. No case of massive fibrosis from over-exposure to tin has been reported.

4933-4935 SN100e No Clean Solder Wire
rosin, hydrogenated

copper

Legend:

TOXICITY	IRRITATION
Not Available	Not Available

TOXICITY	IRRITATION
dermal (rat) LD50: $>2000 \mathrm{mg} / \mathrm{kg}^{[1]}$	Eye: no adverse effect observed (not irritating) ${ }^{[1]}$
Inhalation(Rat) LC50; $>4.75 \mathrm{mg} / 4 \mathrm{hh}^{[1]}$	Skin: no adverse effect observed (not irritating) ${ }^{[1]}$
Oral (Rat) LD50; >2000 mg/kg[1]	

TOXICITY	IRRITATION
dermal (rat) LD50: $>2000 \mathrm{mg} / \mathrm{kg}^{[1]}$	Eye: no adverse effect observed (not irritating) ${ }^{[1]}$
Oral (Rat) LD50; >1000 mg/kg ${ }^{[1]}$	Skin: no adverse effect observed (not irritating) ${ }^{[1]}$

TOXICITY	IRRITATION
dermal (rat) LD50: $>2000 \mathrm{mg} / \mathrm{kg}^{[1]}$	Eye: no adverse effect observed (not irritating) ${ }^{[1]}$
Inhalation(Rat) LC50; $0.733 \mathrm{mg} / 14 \mathrm{~h}^{[1]}$	Skin: no adverse effect observed (not irritating) ${ }^{[1]}$
Oral (Mouse) LD50; $0.7 \mathrm{mg} / \mathrm{kg}^{[2]}$	

1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.
No evidence of a sensitization response was observed in the Gum roins key study, a guideline Local Lymph Node Assay conducted in mice, or in ten supporting studies conducted in guinea pigs according to the GPMT or Buehler methods. Gum Rosin is not classified for dermal sensitization according to the UN Globally Harmonized System of Classification and Labelling of Chemicals (GHS). Gum Rosin is currently classified for Skin Sensitization according to Annex I to Directive 67/548/EEC as R43: May cause sensitization by skin contact. Gum Rosin is also classified according to EU Classification, Labelling and Packaging of Substances and Mixtures (CLP) Regulation (EC) No. 1272/2008. As part of the harmonized translation between Directive 67/548/EEC and EU CLP Regulation (EC) No. 1272/2008, Table 3.1 of EU CLP Regulation (EC) No. 1272/2008 classifies Gum Rosin as "Skin Sensitizer Category 1" and assigns the hazard statement H317: May cause an allergic skin reaction. Table 3.2 of EU CLP Regulation (EC) No. 1272/2008 contains a list of harmonized classifications and labelling of hazardous substances from Annex I to Directive 67/548/EEC. Gum Rosin is assigned the risk phrase R43: May cause sensitization by skin contact in Table 3.2. Subsequent evaluation determined that the single positive study for Gum Rosin was actually conducted with an oxidized form of the test material. Several esters of Rosin have been tested using similar protocols with similar results. When the Rosin esters were heated beyond the specified protocol, the oxidized material caused a positive sensitization response. When those same esters were retested using a different protocol which did not cause oxidation, all sensitization responses were negative. While the oxidized form of Gum Rosin should be considered a skin sensitizer, the recommendation is made to declassify non-oxidized Gum Rosin (CAS \# 8050-09-7).
WARNING: Inhalation of high concentrations of copper fume may cause 'metal fume fever', an acute industrial disease of short duration. Symptoms are tiredness, influenza like respiratory tract irritation with fever. for copper and its compounds (typically copper chloride):
Acute toxicity: There are no reliable acute oral toxicity results available. In an acute dermal toxicity study (OECD TG 402), one group of 5 male rats and 5 groups of 5 female rats received doses of 1000,1500 and $2000 \mathrm{mg} / \mathrm{kg}$ bw via dermal application for 24 hours. The LD50 values of copper monochloride were $2,000 \mathrm{mg} / \mathrm{kg}$ bw or greater for male (no deaths observed) and $1,224 \mathrm{mg} / \mathrm{kg}$ bw for female. Four females died at both 1500 and $2000 \mathrm{mg} / \mathrm{kg} \mathrm{bw}$, and one at $1,000 \mathrm{mg} / \mathrm{kg} \mathrm{bw}$. Symptom of the hardness of skin, an exudation of hardness site, the formation of scar and
COPPER reddish changes were observed on application sites in all treated animals. Skin inflammation and injury were also noted. In addition, a reddish or black urine was observed in females at $2,000,1,500$ and $1,000 \mathrm{mg} / \mathrm{kg} \mathrm{bw}$. Female rats appeared to be more sensitive than male based on mortality and clinical signs.
No reliable skin/eye irritation studies were available. The acute dermal study with copper monochloride suggests that it has a potential to cause skin irritation.
Repeat dose toxicity: In repeated dose toxicity study performed according to OECD TG 422, copper monochloride was given orally (gavage) to Sprague-Dawley rats for 30 days to males and for $39-51$ days to females at concentrations of $0,1.3,5.0,20$, and $80 \mathrm{mg} / \mathrm{kg}$ bw/day. The NOAEL value was 5 and $1.3 \mathrm{mg} / \mathrm{kg} \mathrm{bw} /$ day for male and female rats, respectively. No deaths were observed in male rats. One treatment-related death
 HYDROGENATED
was observed in female rats in the high dose group. Erythropoietic toxicity (anaemia) was seen in both sexes at the $80 \mathrm{mg} / \mathrm{kg}$ bw/day. The frequency of squamous cell hyperplasia of the forestomach was increased in a dose-dependent manner in male and female rats at all treatment groups, and was statistically significant in males at doses of $=20 \mathrm{mg} / \mathrm{kg}$ bw/day and in females at doses of $=5 \mathrm{mg} / \mathrm{kg}$ bw$/ \mathrm{day}$ doses. The observed effects are considered to be local, non-systemic effect on the forestomach which result from oral (gavage) administration of copper monochloride. Genotoxicity: An in vitro genotoxicity study with copper monochloride showed negative results in a bacterial reverse mutation test with Salmonella typhimurium strains (TA 98, TA 100, TA 1535, and TA 1537) with and without S9 mix at concentrations of up to 1,000 ug/plate. An in vitro test for chromosome aberration in Chinese hamster lung (CHL) cells showed that copper monochloride induced structural and numerical aberrations at the concentration of 50,70 and $100 \mathrm{ug} / \mathrm{mL}$ without S 9 mix . In the presence of the metabolic activation system, significant increases of structural aberrations were observed at 50 and $70 \mathrm{ug} / \mathrm{mL}$ and significant increases of numerical aberrations were observed at $70 \mathrm{ug} / \mathrm{mL}$. In an in vivo mammalian erythrocyte micronucleus assay, all animals dosed ($15-60 \mathrm{mg} / \mathrm{kg} \mathrm{bw}$) with copper monochloride exhibited similar PCE/(PCE + NCE) ratios and MNPCE frequencies compared to those of the negative control animals. Therefore copper monochloride is not an in vivo mutagen.
Carcinogenicity: there was insufficient information to evaluate the carcinogenic activity of copper monochloride.
Reproductive and developmental toxicity: In the combined repeated dose toxicity study with the reproduction/developmental toxicity screening test (OECD TG 422), copper monochloride was given orally (gavage) to Sprague-Dawley rats for 30 days to males and for 39-51 days to females at concentrations of $0,1.3,5.0,20$, and $80 \mathrm{mg} / \mathrm{kg}$ bw/day. The NOAEL of copper monochloride for fertility toxicity was $80 \mathrm{mg} / \mathrm{kg}$ bw/day for the parental animals. No treatment-related effects were observed on the reproductive organs and the fertility parameters assessed. For developmental toxicity the NOAEL was $20 \mathrm{mg} / \mathrm{kg}$ bw/day. Three of 120 pups appeared to have icterus at birth; 4 of 120 pups appeared runted at the highest dose tested ($80 \mathrm{mg} / \mathrm{kg}$ bw/day).

No significant acute toxicological data identified in literature search.

X	Carcinogenicity	X
\times	Reproductivity	X
\times	STOT - Single Exposure	\times
\times	STOT-Repeated Exposure	X
\times	Aspiration Hazard	X
	Legend: $\quad \mathbf{X}$-Data either not available or does not fill the criteria for classification \checkmark - Data available to make classification	

11.2.1. Endocrine Disruption Properties

Not Available

SECTION 12 Ecological information

soaked by rain or melt ice. Environmental processes may also be important in changing solubilities.
Even though many metals show few toxic effects at physiological pHs, transformation may introduce new or magnified effects.
A metal ion is considered infinitely persistent because it cannot degrade further.
The current state of science does not allow for an unambiguous interpretation of various measures of bioaccumulation.
The counter-ion may also create health and environmental concerns once isolated from the metal. Under normal physiological conditions the counter-ion may be essentially insoluble and may not be bioavailable.
Environmental processes may enhance bioavailability.
Tin may exist in either divalent (Sn2+) or tetravalent (Sn4+) cationic (positively charged) ions under environmental conditions. Tin(II) dominates in reduced (oxygen-poor) water, and will readily precipitate as a sulfide (SnS) or as a hydroxide $(\mathrm{Sn}(\mathrm{OH}) 2)$ in alkaline water. Tin (IV) readily hydrolyses, and can precipitate as a hydroxide. The solubility product of $\mathrm{Sn}(\mathrm{OH}) 4$ has been measured at approximately $10 \exp (-56) \mathrm{g} / \mathrm{L}$ at $25^{\circ} \mathrm{C}$. In general, tin(IV) would be expected to be the only stable ionic species in the weathering cycle.
Tin in water may partition to soils and sediments. Cations such as $\mathrm{Sn} 2+$ and $\mathrm{Sn} 4+$ will generally be adsorbed by soils to some extent, which reduces their mobility. Tin is generally regarded as being relatively immobile in the environment. However, tin may be transported in water if it partitions to suspended sediments, but the significance of this mechanism has not been studied in detail. Transfer coefficients for tin in a soil-plant system were reported to be 0.01-0.1.
A bioconcentration factor (BCF) relates the concentration of a chemical in plants and animals to the concentration of the chemical in the medium in which they live. It was estimated that the BCFs of inorganic tin were 100, 1,000, and 3,000 for marine and freshwater plants, invertebrates, and fish, respectively. Marine algae can bioconcentrate tin(IV) ion by a factor of 1,900 .
Inorganic tin cannot be degraded in the environment, but may undergo oxidation-reduction, ligand exchange, and precipitation reactions. It has been established that inorganic tin can be transformed into organometallic forms by microbial methylation. Inorganic tin may also be converted to stannane (H 4 Sn) in extremely anaerobic (oxygen-poor) conditions by macroalgae.
DO NOT discharge into sewer or waterways.
12.2. Persistence and degradability

| Ingredient | Persistence: Water/Soil | Persistence: Air |
| :--- | :--- | :--- | :--- |
| | No Data available for all ingredients | No Data available for all ingredients |

12.3. Bioaccumulative potential

Ingredient	Bioaccumulation
	No Data available for all ingredients

12.4. Mobility in soil

Ingredient	Mobility
	No Data available for all ingredients

12.5. Results of PBT and vPvB assessment

	P	B		T
Relevant available data	Not Available	Not Available		Not Available
PBT	\mathbf{X}	\mathbf{X}	\mathbf{X}	
vPvB	\mathbf{X}	\mathbf{X}	\mathbf{X}	
PBT Criteria fulfilled?			No	
vPvB		No		

12.6. Endocrine Disruption Properties

Not Available

12.7. Other adverse effects

Not Available

SECTION 13 Disposal considerations

13.1. Waste treatment methods

Recycle wherever possible or consult manufacturer for recycling options.
Consult State Land Waste Management Authority for disposal.
Metal scrap recycling operations present a wide variety of hazards, including health hazards associated with chemical exposures and safety hazards associated with material processing operations and the equipment used in these tasks. Many of these metals do not pose any hazard to people who handle objects containing the metal in everyday use. In cases where employees could be exposed to multiple hazardous metals or other hazardous substances at the same time or during the same workday, employers must consider the combined effects of the exposure in determining safe exposure levels.
The recycling of scrap metals is associated with illness and injury The most common causes of illness were poisoning (e.g., lead or cadmium poisoning), disorders associated with repeated trauma, skin diseases or disorders, and respiratory conditions due to inhalation of, or other contact with, toxic agents.
The most common events or exposures leading to these cases were contact with an object or piece of equipment; overextension; and exposure to a harmful substance. The most common types of these injuries were sprains and strains; heat burns; and cuts, lacerations, and punctures. Any combustible material can burn rapidly when in a finely divided form. If such a dust is suspended in air in the right concentration, under certain conditions, it can become explosible. Even materials that do not burn in larger pieces (such as aluminum or iron), given the proper conditions, can be explosible in dust form. The force from such an explosion can cause employee deaths, injuries, and destruction of entire buildings. Breaking apart large metal pieces may involve the use of gas cutting torch. Classic cutting torches use gas, while other torches use plasma or powder, or even water. Thermal (gas) torches expose employees to sprays of sparks and metal dust particles, to high temperatures, to bright light that could damage eyes (light both inside and outside of the visible spectrum), and to various gases.
Materials that require higher temperatures to cut, such as pig iron and heat-resistant alloyed scrap, or materials that conduct heat too well to be cut with thermal torches, such as copper and bronze, may be cut with non-thermal methods such as plasma torches or powder cutting torches. Plasma torches are often used for superconductors of heat or heat-resistant metals, such as alloy steels containing nickel and/or chromium. Plasma torches generate a large amount of smoke and noise, as well as ultraviolet (UV) and infrared(IR) light. Depending on the metal, this smoke could contain toxic fumes or dusts.
Other hazards common to cutting operations (as well as to welding and brazing) include burns, fires, explosions, electric shock, and heat stress. Even chemicals that are generally not flammable may burn readily when vapourised.

Larger scrap metal objects are often broken apart using stationary shears, such as alligator shears used to cut apart short steel for foundries or to cut nonferrous metals. These machines can send small pieces of metal flying.
Many scrap metal recycling operations heat scrap pieces to high temperatures to separate different metal components, increase the purity of scrap, bake out non-metal substances, burn off contaminants, remove insulation from wire, or otherwise process the metal scrap. This may be done using furnaces or ovens that use fuel or electrical heating sources. Furnaces generate smoke, dust, and metal fumes, depending on temperature and content. Combustion by-products may include sulfur and nitrogen oxides, and carbon monoxide and carbon dioxide. Organic compounds may be emitted as heating vapourises oil and grease on scraps. In addition, heating or burning of certain plastics (such as plasticcoated wiring) may release phosgene or other hazardous substances. Emissions from fluxing typically include chlorides and fluorides. The highest concentrations of 'fugitive emissions (i.e., gases and vapours that escape from equipment) occur when the lids and doors of a furnace are opened during charging, alloying, and other operations.
Chemical processes are also used in a wide range of metal scrap recycling industries as a means to separate scrap into its component metals, to clean scrap metal prior to using physical processes, to remove contaminants (such as paint) from scrap material, or to extract selected metals from a batch of scrap containing many metal types. Chemical processes may include high-temperature chlorination, electrorefining, plating, leaching, chemical separation, dissolution, reduction, or galvanizing. The most probable emissions from these processes include metal fumes and vapours, organic vapours, and acid gases. Other potential hazards may include high amounts of heat, splashing of caustic or other-wise hazardous chemicals, or combustion hazards.
The recycling of scrap metals or metals found in e-waste (such as printed circuit boards) may present a significant environmental and human health risk. These may contain heavy metals such as cadmium, cobalt, chrome, copper, nickel, lead and zinc. Roads and premises of nearby public facilities such as a school-yard and outdoor food market have been shown to be adversely impacted by the uncontrolled recycling activity. Heavy metal concentrations, especially lead and copper, in workshop and road dusts were found to be severely enriched, posing potential health risks, especially to children.

- DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.

Where in doubt contact the responsible authority.

Waste treatment options
Sewage disposal options

Not Available
Not Available

SECTION 14 Transport information

Land transport (ADR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

14.1. UN number	Not Applicable		
14.2. UN proper shipping name	Not Applicable		
14.3. Transport hazard class(es)	Class Not Applicable		
	Subrisk	Not Applicable	
14.4. Packing group	Not Applicable		
14.5. Environmental hazard	Not Applicable		
14.6. Special precautions for user	Hazard identification (Kemler)		Not Applicable
	Classification code		Not Applicable
	Hazard Label		Not Applicable
	Special provisions		Not Applicable
	Limited quantity		Not Applicable
	Tunnel Restriction Code		Not Applicable

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

14.1. UN number	Not Applicable		
14.2. UN proper shipping name	Not Applicable		
14.3. Transport hazard class(es)	ICAO/IATA Class	Not Applicable	
	ICAO / IATA Subrisk	Not Applicable	
	ERG Code	Not Applicable	
14.4. Packing group	Not Applicable		
14.5. Environmental hazard	Not Applicable		
14.6. Special precautions for user	Special provisions		Not Applicable
	Cargo Only Packing Instructions		Not Applicable
	Cargo Only Maximum Qty / Pack		Not Applicable
	Passenger and Cargo Packing Instructions		Not Applicable
	Passenger and Cargo Maximum Qty / Pack		Not Applicable
	Passenger and Cargo Limited Quantity Packing Instructions		Not Applicable
	Passenger and Cargo Limited Maximum Qty / Pack		Not Applicable

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

14.1. UN number	Not Applicable

14.2. UN proper shipping name	Not Applicable	
14.3. Transport hazard class(es)	IMDG Class	
	Not Applicable	
IMDG Subrisk	Not Applicable	
14.4. Packing group	Not Applicable	
14.5. Environmental hazard	Not Applicable	
	EMS Number	Not Applicable
14.6. Special precautions for user	Special provisions	Not Applicable

Inland waterways transport (ADN): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

14.1. UN number	Not Applicable		
14.2. UN proper shipping name	Not Applicable		
14.3. Transport hazard class(es)	Not Applicable	Not Applicable	
14.4. Packing group	Not Applicable		
14.5. Environmental hazard	Not Applicable		
14.6. Special precautions for user	Classification code Special provisions	Not Applicable	

14.7. Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable
14.8. Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

Product name	Group
tin	Not Available
rosin, hydrogenated	Not Available
copper	Not Available

14.9. Transport in bulk in accordance with the ICG Code

Product name	Ship Type
tin	Not Available
rosin, hydrogenated	Not Available
copper	Not Available

SECTION 15 Regulatory information

15.1. Safety, health and environmental regulations / legislation specific for the substance or mixture

tin is found on the following regulatory lists

EU Consolidated List of Indicative Occupational Exposure Limit Values (IOELVs) Europe EC Inventory

rosin, hydrogenated is found on the following regulatory lists

Europe EC Inventory
European Union - European Inventory of Existing Commercial Chemical Substances (EINECS)

copper is found on the following regulatory lists

Europe EC Inventory
European Union - European Inventory of Existing Commercial Chemical Substances (EINECS)

This safety data sheet is in compliance with the following EU legislation and its adaptations - as far as applicable - : Directives 98/24/EC, - 92/85/EEC, - 94/33/EC, - 2008/98/EC, 2010/75/EU; Commission Regulation (EU) 2020/878; Regulation (EC) No 1272/2008 as updated through ATPs.

15.2. Chemical safety assessment

No Chemical Safety Assessment has been carried out for this substance/mixture by the supplier.

National Inventory Status

National Inventory Status

European Union - European Inventory of Existing Commercial Chemical Substances (EINECS)
International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS)

International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS)

National Inventory	Status
Australia - AIIC / Australia Non-Industrial Use	Yes
Canada - DSL	Yes
Canada - NDSL	No (tin; rosin, hydrogenated; copper)
China - IECSC	Yes
Europe - EINEC / ELINCS / NLP	Yes
Japan - ENCS	No (tin; copper)
Korea - KECI	Yes
New Zealand - NZIoC	Yes
Philippines - PICCS	Yes
USA - TSCA	Yes
Taiwan - TCSI	Yes
Mexico - INSQ	No (rosin, hydrogenated)
Vietnam - NCI	Yes = All CAS declared ingredients are on the inventory
Russia - FBEPH	No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration.
Legend:	

SECTION 16 Other information

Revision Date	$28 / 03 / 2022$
Initial Date	$25 / 10 / 2016$

Full text Risk and Hazard codes

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.
The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. For detailed advice on Personal Protective Equipment, refer to the following EU CEN Standards:
EN 166 Personal eye-protection
EN 340 Protective clothing
EN 374 Protective gloves against chemicals and micro-organisms
EN 13832 Footwear protecting against chemicals
EN 133 Respiratory protective devices

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average
PC-STEL: Permissible Concentration-Short Term Exposure Limit
IARC: International Agency for Research on Cancer
ACGIH: American Conference of Governmental Industrial Hygienists
STEL: Short Term Exposure Limit
TEEL: Temporary Emergency Exposure Limit.
IDLH: Immediately Dangerous to Life or Health Concentrations
ES: Exposure Standard
OSF: Odour Safety Factor
NOAEL : No Observed Adverse Effect Level
LOAEL: Lowest Observed Adverse Effect Level
TLV: Threshold Limit Value
LOD: Limit Of Detection
OTV: Odour Threshold Value
BCF: BioConcentration Factors
BEI: Biological Exposure Index
AIIC: Australian Inventory of Industrial Chemicals
DSL: Domestic Substances List
NDSL: Non-Domestic Substances List
IECSC: Inventory of Existing Chemical Substance in China
EINECS: European INventory of Existing Commercial chemical Substances
ELINCS: European List of Notified Chemical Substances
NLP: No-Longer Polymers
ENCS: Existing and New Chemical Substances Inventory
KECI: Korea Existing Chemicals Inventory
NZIoC: New Zealand Inventory of Chemicals
PICCS: Philippine Inventory of Chemicals and Chemical Substances
TSCA: Toxic Substances Control Act
TCSI: Taiwan Chemical Substance Inventory
INSQ: Inventario Nacional de Sustancias Químicas
NCI: National Chemical Inventory
FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

Reason For Change

A-2.00 - Modifications to the safety data sheet

[^0]: * Values for General Population

